Threshold Regression and First Hitting Time Models

نویسنده

  • Calvin L. Williams
چکیده

First hitting time models are a technique of modeling a stochastic process as it approaches or avoids a boundary, also known as a threshold. The process itself may be unobservable, making this a difficult problem. Regression techniques, however, can be employed to model the data as it compares to the threshold, creating a class of first hitting time models called threshold regression models. Survival data, measuring the amount of time before an event occurs, is widely used in modeling medical and manufacturing data. To analyze and model the data at hand, one commonly used method is the proportional hazards model, but this requires a strong proportional hazards assumption, one that is often lacking in practice. In place of the proportional hazards model, first hitting time models can be employed. First hitting time models do not require such strong assumptions and can be extended to become threshold regression models. Threshold regression has many advantages over the proportional hazards model, including its flexibility in both its assumptions and utilization and its application to stochastic processes so often evident in measuring survival. This paper describes the process of threshold regression modeling and compares its results and utility against that of the proportional hazards model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title Threshold Regression

August 29, 2013 Type Package Title Threshold Regression Version 1.0.2 Date 2012-11-26 Author Tao Xiao Maintainer Tao Xiao Depends survival, Formula Description Fit a threshold regression model based on the first-hitting-time of a boundary by the sample path of a Wiener diffusion process. The threshold regression methodology is well suited to applications involving survival ...

متن کامل

First hitting times for general non-homogeneous 1d diffusion processes: density estimates in small time

Motivated by some applications in neurosciences, we here collect several estimates for the density of the first hitting time of a threshold by a nonhomogeneous one-dimensional diffusion process and for the density of the associated process stopped at the threshold. We first remind the reader of the connection between both. We then provide some Gaussian type bounds for the density of the stopped...

متن کامل

Estimation in discretely observed diffusions killed at a threshold

Parameter estimation in diffusion processes from discrete observations up to a first-hitting time is clearly of practical relevance, but does not seem to have been studied so far. In neuroscience, many models for the membrane potential evolution involve the presence of an upper threshold. Data are modeled as discretely observed diffusions which are killed when the threshold is reached. Statisti...

متن کامل

Bayesian random-effects threshold regression with application to survival data with nonproportional hazards.

In epidemiological and clinical studies, time-to-event data often violate the assumptions of Cox regression due to the presence of time-dependent covariate effects and unmeasured risk factors. An alternative approach, which does not require proportional hazards, is to use a first hitting time model which treats a subject's health status as a latent stochastic process that fails when it reaches ...

متن کامل

A martingale analysis of first passage times of time-dependent Wiener diffusion models.

Research in psychology and neuroscience has successfully modeled decision making as a process of noisy evidence accumulation to a decision bound. While there are several variants and implementations of this idea, the majority of these models make use of a noisy accumulation between two absorbing boundaries. A common assumption of these models is that decision parameters, e.g., the rate of accum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015